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This paper considers the application of the "nite element method for the analysis of
translating or rotating plates, based on Mindlin plate theory and the von KaH rmaH n strain
expression, in the context of linear thermoelasticity. The existence of convective terms
generates gyroscopic terms, unstabilizing e!ects in the sti!ness matrix, and radial in-plane
tension. Homogenization theory, applicable to not only determining the global material
properties for composite materials like laminate or "ber-reinforced matrix, but also
computing microscopic stress levels, was applied to obtain orthotropic material properties.
The quasi-static stretching assumption was used to simplify the governing equations.
A second order implicit time-integration scheme, applicable for both the linear and
non-linear governing equations, was presented, which allows a time increment su$ciently
large (without numerical stability problems) based on the accuracy needed. This paper
(Part I) presents the problem formulation and solution methods, while a companion paper
(Part II) presents and discusses results for specially orthotropic rotating disks.
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1. INTRODUCTION

This paper considers a general two-dimensional coupled thermal and plate bending
problem for a rotating anisotropic plate subject to transverse forces and heat sources,
including transverse shear stresses and rotary inertia. Such problems arise in a variety of
technologies, including subsidiary memory devices such as #oppy disks, hard disks,
CD-ROMs, and optical disks.

Many researchers have studied the behavior of disks or circular plates in such
applications as circular saws, turbines, and more recently, computer memory devices.
Recently, laminated composite media are e!ectively utilized in some of these applications. It
is, thus, important to consider anisotropic material properties in the study of the dynamic
behavior of disks. In a computer disk this anisotropy*special orthotropy*comes from
two sources. One is that, the disk has di!erent geometric shapes in the radial and
circumferential directions, because the disks used for data storage store their data along
tracks in the circumferential direction. These tracks are actually circumferentially aligned
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grooves or pits. Sometimes the disks include coating of magnetic or overcoat layers, and in
the magnetic layers the crystal structures are intentionally aligned along tracks or along the
polar axis, according to the recording method in the memory device, to get the largest areal
capacity.

One of the most important applications of the rotating disk is in the "eld of subsidiary
memory devices such as #oppy disks, hard disks, CD-ROMs, and optical disks. Because
a #oppy disk rotates on demand only, there are e!ects due to the time-varying rotational
speed. For hard or optical disks there are also transient e!ects due to acceleration in the
rotation speed of the disk when a disk starts or stops. The #oppy or #exible disk, as implied
by its name, is very #exible and develops relatively large de#ections even when subject to
small external forces. However, it still works well because the track density for #oppy disks,
usually 96}192 tracks per inch, is not so large. In the case of hard disks the track density is
1000 or 2000 tracks per inch. Thus, tracking capability must be more accurate in order to
recover data. The transverse de#ection has the highest magnitude among the de#ections in
various directions of a typical plate. The transverse force is, thus, important in the analysis
of the motion of a disk. In a hard-disk drive, the aerodynamic interaction between the
read/write heads and disks, with the surrounding media, give rise to a transverse force on
the disk.

The most advanced subsidiary memory device is the erasable optical disk drive which
uses a magneto-optical disk composed of a polycarbonate substrate covered by magnetic
and other layers. The material used for making the magnetic layer has the property that its
coercivity decreases abruptly when temperature increases. As a result, the polarity of the
material easily changes in accordance with the external magnetic "eld applied to the disk.
During the reading of stored data, an optical sensor determines bit information by
measuring the re#ected path of the laser, which generates heat. During the writing of new
data, it is necessary to heat the data bit section by laser, then apply the desirable external
magnetic "eld. This gives rise to a temperature gradient on the disk. Another temperature
e!ect comes from the heat generated by a spindle motor in a disk drive.

Several studies of stationary isotropic disks exist. For example, Chen and Doong [1]
demonstrated the e!ect of varying loads and other parameters on the natural frequencies.
Chaudhure [2] showed the e!ect of thickness variation on the stress resultants. Honda et al.
[3] computed transverse de#ections caused by a harmonic force.

Extensive research has also been done for rotating isotropic disks. Eversman and Dodson
[4] analyzed membrane disks and showed the e!ect of the magnitudes of the inner and
outer radius on the natural frequencies of the disk. The e!ects of rotational speed on the
natural frequencies have been studied either by utilizing a Green's function approach [5] or
by using separation of variables [6]. Similar studies were done by Barasch and Chen [7]
and Iwan [8]. Benson and Bogy [9] and Benson [10] have studied the near-membrane case.
It was shown through an eigenvalue study that it is necessary to retain bending terms in the
governing di!erential equation to support an arbitrary load. Dugdale [11] showed the
existence of travelling waves for a centrally clamped disk. Irie et al. [12, 13] obtained free or
forced frequency responses. Leung and Pinnington [14] computed spectral densities for
di!erent rotational speeds. Cole and Benson [15] have obtained the de#ection and
eigenvalue spectra under several di!erent loading conditions. Huang and Chiou [16]
studied the dynamics of spinning disks subject to a moving magnetic head in the context of
computer storage systems. A harmonic moving load was assumed and resonant conditions
as well as transient response were calculated. Vera et al. [17] calculated the natural
frequencies for transverse vibrations of annular plates with various combinations of
boundary conditions. Nayfeh et al. [18] studied non-linear transverse vibrations of
a centrally clamped circular disk rotating at constant angular velocity.
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Orthotropic materials properties were examined in several studies on stationary disks.
The natural frequencies were computed for both the uniform thickness case [19] and the
variable thickness case [20, 21]. Oyibo and Brunelle [22] studied a simple one-dimensional
problem considering initial stresses. Tutuncu [23] obtained closed-form solutions for
stresses and displacements in a polar anisotropic circular plate subject to a constant
temperature change. Lin and Tseng [24] studied the free-vibration problem for polar
axisymmetric orthotropic laminated circular or annular plates.

Mote [25] obtained transient thermal stresses for an isotropic stationary disk for which
the temperature distribution is speci"ed as a function of time. He used a one-dimensional
vibration model to compute the corresponding natural frequency variation as a function of
time. Tomar and Gupta [26] considered thermal e!ects limited to the material properties in
the study of the eigenvalues of isotropic stationary disks. Two-dimensional di!erential
equations of heat conduction have been added to the elasticity equilibrium equation to
show the e!ect of thermal strain on the natural frequencies of a rotating orthotropic disk
with constant rotational speed [27]. Ghosh [27] simpli"ed the problem into
a one-dimensional axisymmetric model for the transverse vibration by taking average
stresses over the thickness of the disk and neglecting both in-plane and transverse
shear stresses. The additional assumption that the mean radial and tangential stresses
are independent of the transverse de#ection makes it possible to determine these
stresses prior to the analysis of transverse vibrations. Thus, Ghosh [27] has dealt
with the two-dimensional thermoelastic rotating disk problem, and does not consider
the non-axisymmetric case to compute time responses, and neglects transverse shear
stresses.

The purpose of the research reported in this paper is to formulate and solve a general
two-dimensional coupled thermal and plate bending problem for an anisotropic plate in
non-steady rotation subject to transverse forces and heat sources, including transverse shear
stresses and rotary inertia.

In section 2, the detailed problem formulation is given. First, the equations of motion for
the plate bending problem are obtained based upon the Mindlin plate theory and the von
KaH rmaH n strain expressions for the case where the medium is rotating. In section 3 material
properties are expressed for specially orthotropic materials. In section 4, the conduction
problem is formulated considering convection terms and in section 5 the matrix forms for
the combined thermoelastic plate problem are obtained. The solution method is presented
in section 6 where an a-method, together with a predictor}multicorrector scheme,
applicable to both the linear and non-linear cases, is utilized for the time integration.
Section 7 summarizes the modelling approach and conclusions. The details of obtaining
necessary matrices and vectors for solution are included in Appendix A. Appendix
B summarizes a general method for obtaining homogenized material properties.
A companion paper (Part II), presents results and discussions from the application of the
formulation presented in this paper to rotating specially orthotropic disks.

2. THE EQUATIONS OF MOTION FOR AN ANISOTROPIC PLATE

For consistent derivation of the linearized equations, and for consideration of geometric
non-linearities, the strains need to be expressed non-linearly in terms of "rst partial
derivatives of displacements. To generalize the problem of the dynamics of rotating disks,
those with anisotropic properties will be considered.

A thin disk of inner radius R
i
, and outer radius R

o
, is assumed to rotate about its polar

axis with an angular velocity X(t) as shown in Figure 1. A space-"xed cylindrical



Figure 1. Disk con"guration.
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co-ordinate (r, h, z), or rectangular co-ordinate (x, y, z) is chosen to represent the undeformed
con"guration.

The plate of interest is assumed to be in the elastic region during the analysis. A "nite
strain tensor can be developed in its full quadratic form in terms of "rst partial derivatives
[28]. However, the fact that the magnitudes of the derivatives of displacements are quite
di!erent due to a small thickness of the disk enables us to use von KaH rmaH n strain
expressions. Assume that the lines normal to the mid-plane remain straight under
deformation, and that there exist transverse shear strains following the Mindlin plate
theory. The disk is assumed to rotate at an angular velocity which is a prescribed function of
time. The disk is also subject to thermal strains caused by a temperature gradient due to
heat sources.

Let (u, v, w) be the displacements at an arbitrary point having the co-ordinate (x, y, z). The
von KaH rmaH n strain assumes, in representing strains in quadratic form in terms of the "rst
derivatives of displacements, that the second order terms except w,2

x
, w,2

y
, and w,

x
w,

y
, may be

neglected [29]. Assuming further that the strain e
z
may be neglected, then one can write the
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The strains in the cylindrical co-ordinate system are
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where (u
r
, uh , w) are the displacements at arbitrary points measured along the cylindrical

co-ordinate. In index notation, one can write
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Throughout, the indices i, j, k, l take on the values 1, 2. The summation convention is in
e!ect. The stress}strain relation is
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In order to obtain the equations of motion using Hamilton's principle, it is necessary to
compute the potential energy, the kinetic energy and the work done by non-conservative
forces.

The strain energy ; is computed as
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The total potential energy, <, can be expressed as the sum of the strain energy, ;, and the
potential energy due to the displacement w in the presence of the gravitational "eld, g. Thus,

d<"d;#P
v

ogdwd<. (6)

If one considers a rotating system with a rotational speed of X(t), then the velocity
observed by an observer on the inertial frame is expressed as
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where (r, h, z) is expressed in the cylindrical co-ordinate system. In a rectangular co-ordinate
system (x, y, z), one can write
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Note that if a translating plate is considered, the above velocity expressions can easily be
modi"ed by using the translational speed of the plate. Thus, the analysis method presented
here can easily be applied to translating plates [28].

In general, one may write the velocities compactly as
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where
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The kinetic energy of an in"nitesimal element is

d¹"1
2

v ) vdm"1
2

ov ) vd<,

where o is the mass per unit volume. The total kinetic energy is

¹"

1

2 P
v

ov ) vd<"
1

2 P
v

o (v
i
v
i
#v

z
v
z
) d<. (10)
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From the Euler equations for the above variational form, one obtains the following
equations of motion:
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Note that for the purely rotating case with constant speed X,
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becomes the centrifugal force per unit volume in the ith direction.
The Mindlin plate theory can now be used to simplify the equations of motion by

expressing them in terms of the mid-plane de#ections in a two-dimensional domain (plate).
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Let (uN , vN , wN ) be the displacements at the mid-surface co-ordinate (x, y, 0). The Mindlin plate
theory is based upon the assumptions [30]
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previous section. Therefore,
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where the mid-plane strains e are expressed as
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and the curvatures i are shown to be
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In terms of cylindrical co-ordinates [29], the mid-plane strain}displacement relation is
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and the curvature change to displacement relation is
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Note that all the components of e, i, s, and k are independent of z. Now de"ne the force and
moment resultants as
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where D"h3/12. Integrate equations (13) along the direction of the thickness z"(!h/2,
h/2), to get
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Multiplying equation (13a) by z and integrating along the thickness, one obtains
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Rewrite equations (27) and (28), in a compact form as
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Now one has a set of the equilibrium equations (29) expressed in terms of the resultant
forces N

ij
, Q and the resultant moments M

ij
instead of equations (13). Since the resultant

forces and moments are functions of the mid-plane de#ections (see equation (26)), one has
the equilibrium equations in terms of the mid-plane de#ections.

Equation (29) is a strong form of the governing equation. In order to solve for this
equation numerically, a weak form is obtained and then semi-discretized using shape
functions which are constant with respect to time. This leads to the so-called semi-discrete
Galerkin's method, where a "nite-dimensional approximate solution is sought.

To obtain the weak form, equations (29) are multiplied by weighting functions uJ
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satisfy the essential boundary conditions and the weighting functions
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where the superscripts denote the types of the boundary conditions, the subscripts n and
s denote the normal and the tangential directions to the boundaries, and the subscript i, as
usual, takes on the values 1 and 2. The "rst type of boundary condition, C1, denotes that all
the de#ections are speci"ed (essential boundary conditions). The second type, C2, has partly
essential (both the in-plane and the out-of-plane de#ections are speci"ed) and partly forced
(the moments are speci"ed) boundaries. The third type, C3, is also of the partly essential and
partly forced boundary type, but this time with speci"ed in-plane and out-of-plane forces
and speci"ed rotations. The fourth type of boundary condition, C4, is purely for a forced
boundary condition.

If one decomposes the resultant moment into normal and tangential components,

M
ij
n
j
hI
i
"M

nn
hI
n
#M

ns
hI
s
, (35)

the boundary terms become

PC

(2) dC"PC2

[!M2
nn

hI
n
!M2

ns
hI
s
] dC#PC3

[N3
1
uJ
1
#N3

2
uJ
2
#Q*3

n
wJ ] dC

(36)

#PC4

[N4
1
uJ
1
#N4

2
uJ
2
#Q*4

n
wJ !M4

nn
hI
n
#M4

ns
hI
s
] dC.
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Then, by following a standard procedure as described in Appendix A, the following system
of equations can be obtained:

M
u
uK"F0

u
, M

x
xK"F0

x
, (37)

with the vectors of displacements u and x being described as

u"Mu
1
, u

2
,2, u

N
N, x"Mx

1
, x

2
,2, x

N
N,

where N is the total number of nodal points, and ua"Mu
1a, u

2aNT, xa"Mwa, h
1a, h

2aNT
(a"1, 2,2, N).

The matrices and vectors in equation (37) are de"ned in Appendix A.
Next introduce the quasi-static stretching assumption. The dynamic characteristics of

in-plane motion and of out-of-plane motion are quite di!erent. The eigenvalues associated
with the in-plane motions are very high, and those with the transverse motion are very low.
If all the dynamics are included and computed numerically, then the so-called &&sti!'' system
results. In order to avoid a sti! system, one can neglect the dynamics of the
very-high-frequency in-plane motions. Here, only the static equilibrium state of the in-plane
motions is computed, whereas the dynamics related to the transverse de#ection and the
rotations at the mid-plane are retained.

The general form for the governing equations then becomes

0"F1
u
(t; z)"!N

u
(t; z), M

x
xK"F1

x
(t; z)"!N

x
(t; z), (38)

where z"MTT, uT, xT, x5 TNT and T is the temperature (see section 3):

F1
u
(t; z)"F0

u
!P

A

ha
ij

uNQ
j
dA, F1

x
(t; z)"F0

x
,

N
u
(t; z)"!F1

u
(t; z), N

x
(t; z)"!F1

x
(t; z).

The consistent sti!ness matrices K
u

and K
x

and the consistent damping matrix C
x

at
a given geometry z"z

0
are de"ned as

K
u
"

LN
u

Lu Kz
0

, K
x
"

LN
x

Lx Kz
0

, C
x
"

LN
x

Lx5 Kz
0

. (39)

The linearized version, about z
0
, of the equilibrium equations in matrix form is

K
u
u"F

u
, M

x
xK#G

x
x5 #K

x
x"F

x
, (40)

where

F
u
"F1

u
!K

u
u, F

x
"F1

x
!G

x
x5 !K

x
x.

Here, G
x

is used instead of C
x
, because damping is not included and there is only

a gyroscopic operator. The consistent sti!ness matrices have the form

K
u
"K0

u
#KG

u
#KF

u
, K

x
"K0

x
#KG

x
#KF

x
. (41)

The expressions for all matrices and vectors are given in Appendix A.
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3. MATERIAL PROPERTIES FOR AN ORTHOTROPIC PLATE

The elasticity tensor has been used in the constitutive relation in the derivation of the
governing equations of motion. Since the directional properties are readily available in most
cases, it is necessary to obtain the relation between the directional elastic properties and the
elasticity tensor. The strain}stress relation, for orthotropic materials, is represented by [31].

e
ij
"A

ijkl
p
kl
, 2e

iz
"A

iziz
p
iz
, (42)

where the compliance tensor A
imjn

satis"es major and minor symmetry

A
ijkl

"A
klij

"A
jikl

"A
ijlk

and has the components

A
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E
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, A
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, A
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,
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"
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4G
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, A
2323

"

1

4G
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, A
1212

"A
2121

"A
1221

"A
2112

"

1

4G
12

,

A
imjn

"0 otherwise.

By inverting the in#uence tensor, one can obtain the constitutive relation of the form

p
ij
"C

ijkl
e
kl
, p

iz
"C

iziz
2e

iz
, (43)

where the elasticity tensor C
imjn

also satis"es major and minor symmetry and has the
components

C
1111

"

E
1

(1!v2)
, C
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"

E
1
v
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(1!v2)
,

C
2222

"

E
2

(1!v2)
, C
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"

E
2
v
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(1!v
2
)
,

C
1313

"G
13

, C
2323

"G
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, C
1212

"C
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"C
1221

"C
2112

"G
12

,

C
imjn

"0 otherwise

and v2"v
12

v
21

.
If one assumes that there are pre-strains then

p
ij
"C

ijkl
(e
kl
!e0

kl
)"C

ijkl
e
kl
!p0

ij
,

(44)

p
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!e0
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!p0

iz
,
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where e0
jn

represents the pre-strains caused by residual stresses and the temperature
distribution within the domain, and p0

im
are the pre-stresses. To consider the e!ects of

microstructure on the global elasticity properties, the homogenized elasticity tensor, CH
imjn

,
which can be obtained as described in Appendix B will be used for laminates.

4. HEAT CONDUCTION PROBLEM

In order to include the e!ect of temperature gradients on the analysis of dynamic
de#ections, one needs to know the dynamic distribution of temperature.

Consider a time-dependent heat conduction process. Time is denoted by t, temperature
by ¹, the domain by ALR2, the closure of the domain by AM , and Rn represents the
n-dimensional space of real numbers. The heat source, f, is given by

f : A](0, t
f
)PR . (45)

Here, f includes the e!ects of both the external heat source and the convective heat #ow
between the medium and the ambient air,

f"f
s
!h

s
(¹!¹

0
), (46)

where f
s
is the heat generated by the heat source within the domain, h

s
is the heat transfer

coe$cient, and ¹
0
is the ambient air temperature above the domain. The boundary data are

given as

g : Cg](0, t
f
)PR, H

T
:C

h
](0, t

f
)PR, (47)

where t
f

represents the steady state.
The heat #ow, H

T
, at the boundary is

H
T
"Q

h
!H

b
(¹!¹

=
), (48)

where Q
h

denotes the external heat #owing through the boundaries, H
b

the heat transfer
coe$cient and ¹

=
the ambient air temperature outside of the boundaries. Also, the initial

condition for the problem is given by

¹
0
: APR. (49)

The heat transfer coe$cients, h
s
and H

b
, can be determined by using the rate form of the

convection heat #ow

q
n
"h

v
(¹!¹

a
), (50)

where q
n

is the heat #ow in the outward normal direction, h
v

is the convection heat
coe$cient, and ¹

a
is the temperature of the ambient air. Here the convection coe$cient is

a function of the #uid velocity adjacent to the surface of the solid. If one assumes that the
current domain is under the e!ect of de#ection then it is reasonable to include the e!ect of
increase of the area due to de#ection in computing the convection coe$cient. This provides
the feedback from the de#ection to the temperature dynamics. Together with the
temperature to de#ection e!ect as initial strains (see Appendix A), this completes the
coupling mechanism. The convection coe$cient, considering the change in the area of
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the domain, then becomes

h
s
"h

v
(J`#J~), (51)

where J is the Jacobian of the deformation gradient tensor related with the area of the
domain, and the superscripts# and !denote the quantities at z"h/2 and z"!h/2
respectively. Let the undeformed con"guration be x

i
and the current con"guration be

x
i
#u

i
. The deformation gradient tensor then becomes

F
ij
"

L (x
i
#u

i
)

Lx
j

"d
ij
#u

i,j
. (52)

For the Mindlin plate, since

u
i
"uN

i
!zh

i
, F

ij
"d

ij
#uN

i,j
!zh

i,j
, (53)

the Jacobian, J, is

J"det (F
ij
)"eijF

i1
F
j2

, (54)

where eij denotes the permutation symbol. Therefore,

J`#J~"J D
z/h@2

#J D
z/~h@2

"2 det (d
ij
#uN

i,j
)
h2

2
det (h

i,j
)

and the heat transfer coe$cient, h
s
, on the surface becomes

h
s
"h

v C2 det (d
ij
#u6

i,j
)#

h2

2
det (h

i,j
)D . (55)

At the boundary C
h
, the heat transfer coe$cient, H

b
, becomes

H
b
"hh

v

dS

ds
, (56)

where ds and dS are the lengths of an in"nitesimal boundary element before and after
deformation respectively. If a small boundary element has two node points (1) and (2) and
the vector from point (1) to point (2) before and after de#ection are r and R, respectively,
then

dS

ds
"

ERE
2

ErE
2

,

where ExE
p

is a p-norm of x3Rn de"ned by

ExE
p
"C

n
+
i

xp
i D

1@p
.

For 0)6(Pr(60, the following empirical relation holds [32]:

C
f
/2"St Pr2@3, (57)
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where the friction coe$cient, C
f
,

C
f
"

q
s

1
2
o<2

(58)

and Pr and St denote the Prandtl and Stanton numbers de"ned as usual [32]. The range of
Pr is 0)786}0)686 when the temperature of the air is in the range !173 to #1773C, hence
the use of equation (57) is justi"ed. The shear stress is known to satisfy

q
s
"k

Lu

Lz
, (59)

where k is the viscosity and u is the velocity of the #uid. By use of the above relations, one
obtains

h
v
"

kk
o<(v2a)1@3

Lu

Lz
, (60)

where v is the kinematic viscosity.
The velocity distribution of the #uid in the neighborhood of a rotating disk with the

rotational speed of X(t) is known (e.g., reference [33]):

Lu
r

Lz
"0)510rXA

X

vB
1@2

,
Luh
Lz

"!0)6159rXA
X

vB
1@2

.

Since

Lu

Lz
"CA

Lu
r

LzB
2
#A

Luh
Lz B

2

D
1@2

"0)8rXA
X
vB

1@2
"0)8<A

X
vB

1@2
,

the approximate expression for h
v
is

h
v
"

0)8kkX1@2

ov7@6a1@3
. (61)

The initial-boundary value problem in the strong form is stated as follows. Given f
s
, g, h

s
,

H
b
, ¹

0
and ¹

=
, "nd ¹ :AM PR such that

ohc (¹Q #<
i
¹
,i
)#+ ) q"f on A](0, t),

¹"g on Cg](0, t),
(62)

!q ) n"H
b

on C
h
](0, t),

¹(x, 0)"¹
0
(x), x3A,

where f and H
T

are given as in equations (46) and (48), and <
i
is the velocity of the medium

expressed in index notation. Density, o, thickness, h, and capacity, c, are all assumed
positive functions of x3A. The heat #ux vector q is given by the generalized Fourier's law

q"!K )+¹ or q
i
"!K

ij
¹
, j
, (63)

where K "hk denotes the conductivity tensor and k is the heat conductivity.

ij ij ij
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The corresponding weak form is obtained by multiplying equation (62) by a weighting
function ¹3 and integrating over the domain

P
A

¹I [ohc(¹Q #<
i
¹
,i
)!+ ) (K )+¹ )] dA"P

A

¹I f dA .

De"ning

Sn"Mu D u
i
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i
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i
, u

i
3H1(A), i"1,2, nN,

(64)

<n"Mv D v
i
"0 on Cg

i
, v

i
3H1(A), i"1,2 , nN,

then by use of the divergence theorem, one obtains the following weak form.
Given f

s
, Q

b
, g, h

s
, H

b
, ¹

0
, and ¹

=
, "nd ¹3S1:AM PR such that, for all ¹I 3<1,
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By using the proper shape functions

¹I "¹I aNa , ¹"¹aNa ,

it follows that
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The corresponding matrix form is stated as follows. Given f
s
, Q

b
, g, h

s
, H

b
, h, ¹

0
and ¹

=
, "nd

¹3S:AM PR such that

M
T
T0 #K

T
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T
, (67)

where

M
¹ab"P

A

NaohcNb dA,

K
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Nb dC,

F
¹a"P

A

Na ( f
s
#h

s
¹
0
) dA#PC

h

Na(Qb
#H

b
¹
=

) dC.

One can now solve for the temperature distribution.
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Temperature distributions give rise to thermal strains. Let the orthotropic thermal
expansion coe$cients be a

im
,

a"Ma
11

, a
22

, a
12

, a
23

, a
13

NT,

then the initial strains, e0
im

, or the initial stresses, p0
im

, caused by the temperature distribution
are

e0
im
"a

im
+¹, p0

im
"b

im
+¹, (68)

where

b
ij
"C

ijkl
a
ki
, b

iz
"C

iziz
2a

iz
.

5. THERMOELASTIC PLATE PROBLEM

The combined thermoelastic plate problem has now been formulated to include both the
dynamics of the elastic plate and the heat conduction problem. From equations (67)
and (38).

M
T
T0 "F

T
(t; z)"!N

T
(t; z), 0"F

u
(t; z)"!N

u
(t; z), M

x
xK"F

x
(t ; z)"!N

x
(t; z),

(69)

where z"MTT, uT, xT, x5 TNT.
It is important to exactly compute the tangent sti!ness and tangent damping matrices for

non-linear problems, especially when used with unconditionally stable integration schemes.
For the a-method, the tangent sti!ness and the tangent damping matrices for the updated
geometry, may be computed several times during the computation of one time step. Here,
a &&modi"ed'' a-method will be introduced for the sake of economy of computational e!ort.

Equations (69) may be expressed in the linearized form at an arbitrary point 0 as
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Here the consistent (or tangent) system matrices have been moved to the left-hand side of
equation (70) and the force vectors adjusted accordingly.

6. SOLUTION METHOD

Equation (70a) is of parabolic form. Using the predictor}corrector scheme, one can
obtain the time response as

T3
n`1

"T
n
#(1!a)DtT0

n
,

(M
T
#aDtK

T
)T0

n`1
"F

n`1
!K

T
T3

n`1
, (71)

T
n`1

"T3
n`1

#aDtT0
n`1

.

For unconditional stability, it is necessary to choose a*0)5.
The a-method (Hilber}Hulbert}Taylor method) can implement numerical damping

without degrading the order of accuracy [34]. Equation (70c) is modi"ed to

M
x
a
n`1

#(1#a
1
)C

x
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n`1

!a
1
C

x
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#(1#a

1
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x
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1
K

x
x
n
"F

n`1`a1 . (72)

If the parameters are chosen such that a
1
3[!1

3
, 0], c"(1!2a

1
)/2 and b"(1!a

1
)2/4,

then a second order accurate, unconditionally stable scheme results.
The following &&modi"ed'' a-method is used to get the dynamic response when

temperature distribution, in-plane de#ection, and out-of-plane de#ection are all considered
simultaneously. Notice that it is called a &&modi"ed'' a-method since it does not compute the
tangent matrices for every step. Here, the current tangent matrices are used j

max
times to

compute the de#ections and the velocities, and then the matrices are updated. This reduces
the computing time because one has to carry out the costly step of factorizing the system
matrices whenever there are new sets of tangents. If one sets j

max
"1, then this scheme is

exactly the a-method.

1. Initial phase: Set n"0. Determine the coe$cients
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1
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(73)
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1
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and the initial condition
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x
(x

0
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0
)]. (74)

If lumped mass matrices are used, then M is diagonal and its inversion is trivial.
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2. Predictor phase: Set nQn#1, and t"(n!1)Dt#c
6
,

T
1
"T3 "T#c

11
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u
1
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3. ;pdate and factorization of consistent matrices. Set j"1:
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4. Corrector phase at t
n`1`a1 :
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5. Convergence test: If e"EDaE
2
)error bound, go to Step 6. Else set jQj#1, and if

j'j
max

go to Step 3, otherwise go to Step 4.

6. ;pdate of states at t
n`1

:

T"(T
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1
#T, u"(u
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!u)/c

1
#u,

(79)
v"(v

1
!v)/c

1
#v, x"(x

1
!x)/c

1
#x.

Go to Step 2 for the next time step.

7. SUMMARY AND CONCLUSIONS

A dynamic thermoelastic problem for rotating plates or disks subject to transverse loads,
heat sources, and with anisotropic material properties is formulated. The formulation is
based upon the Mindlin plate theory, the von KaH rmaH n strain expression, and the
quasi-static stretching assumption. The existence of convective terms generates gyroscopic
terms, unstabilizing e!ects in the sti!ness matrix, and radial in-plane tension.
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The resulting governing equations of motion are non-linear. The most important
contribution of the non-linear governing equation is that it can capture the e!ect of in-plane
de#ection or stress on the transverse de#ection. Other contributions of the higher order
terms, for example the e!ect of transverse de#ection on the in-plane de#ection and the
higher order terms in the equation of transverse de#ection, were neglected.

By using the quasi-static stretching assumption, it was possible to signi"cantly simplify
the governing equations. At an equilibrium, consistent system matrices were obtained.
These consistent matrices were used as the linearized version of the governing equation to
solve the corresponding eigenvalue problem.

A time integration scheme, applicable for both the linear and non-linear governing
equations were presented. The second order accurate implicit method is chosen in this
study, because it allows a su$ciently large time increment based on the accuracy needed
without causing a numerical stability problem. A companion paper (Part II) presents results
of applications of this method to specially orthotropic rotating disks.
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APPENDIX A: MASS AND STIFFNESS MATRICES AND FORCE VECTORS

Substituting equations (29) into (33) using the "nite-dimensional approximation of uJ
i
, uN

i
,

wJ , wN , hI a and ha in the form
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jbNb, wN "wN bNb, h
j
"h

jbMb, (A.2)

where N and M (a,b"1,2 , n) are the shape functions for the de#ections and the
rotations, respectively, one gets
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where P
ia, Pza and M

ia are computed from equation (36), and f
i
, f

z
and m

i
are obtained using

equation (30).
The mass matrices are given as
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Inherent sti!ness matrix components are
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Sti!ness matrix contributions due to body forces are
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The mass matrix is
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The force vectors are represented by
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The "rst terms comes from the e!ect of body forces,
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The force vectors owing to initial displacements are
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APPENDIX B: HOMOGENIZED ELASTICITY TENSOR

If a material is not isotropic, say a laminate or a composite, then one has to determine the
directional properties of the material to use in a constitutive relation. Experiment is one way
to determine such properties when the material of interest is readily available. In most cases,
however, it is not desirable and sometimes not possible to do an experiment. If one knows
the (isotropic) material properties of each constituent for the laminate or the composite and
the geometry, then it is possible to compute &&averaged'' properties by examining the local
structure of the components. Although there are conventional ways to obtain the
&&averaged'' properties (e.g., by the rule of mixtures) these methods are lacking in their ability
to assess the di!erences that arise due to the shapes of each constituent.

One possibility to avoid the need for &&averaged'' properties is to solve for the
deformation, or the stress, in su$ciently small elements. This method involves extensive
computing e!ort, due to the minute scale of the elements. Another possibility is to choose
a typical &&unit cell'', and by discretizing it into very small elements and imposing the
conditions which must be satis"ed by the unit cell, to generate global properties. The scale
of the elements is still very small, but the domain is only the volume of the unit cell, hence in
many cases it gives an e!ective and systematic way to obtain the homogenized properties.
The formulation of the problem which leads to the explicit expression for the homogenized
properties will be explained in this section.

Suppose that a body is made up of several di!erent materials whose mixture is formed by
the spatial repetition of a unit cell of very small order compared to the dimensions of the
structural body. A composite material having a unit cell composed of, for example, two
di!erent materials A and B is illustrated in Figures B1 and B2.
Figure B2. Unit cell.

Figure B1. Composite material.
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Due to the existence of the microstructure, the whole domain < is very inhomogeneous.
As a result, when this body is subject to external force f and boundary conditions, the
resulting de#ection, or the stress, abruptly varies from location to location. In order to
obtain the de#ection or stress distribution with reasonable accuracy, it is needed to have
a tremendously large number of discrete elements, su$cient to cover the details of the
microstructure. Thus, it is very useful to develop a method capable of re#ecting the existence
of the microstructure during computation of the macroscopic behavior of the body without
considering the microscopic details of each material point. The homogenization method
[35] is used here to characterize the equivalent elasticity tensor for macroscopic analysis.
The microscopic behavior in the unit cell can also be approximately computed by
postprocessing a macroscopic response. Note that the homogenization process is not
a simple averaging with respect to the volume ratio of the composing materials. This
method re#ects not only the amounts but also the shapes of the constituents.

It is reasonable to assume that all quantities have two explicit dependencies, i.e., letting
/ be a general function

/e"/e (x, y), (B.1)

where the e-superscripted quantities re#ect the existence of the microstructure characterized
by e, and e is a very small positive number representing the ratio of the macroscopic level
x and microscopic level y, i.e.,

y"
x

e
. (B.2)

The dependency on y means that a quantity varies within a very small region with
dimensions much smaller than those of the macroscopic level.

Let<LRn be an open set with a smooth boundary C. Let the domain of a unit cell be>,

>"
n

<
i/1

[0, y0
i
], (B.3)

as shown in Figure B2. There are two open sets, namely, A for the material part A and B for
the material part B. Since the microstructure is >-periodic, the microscopic level y is also
Y-periodic. Therefore, it is reasonable to assume that the dependency of all quantities on y is
>-periodic, i.e.,

/e(x, y)"/e(x, y#y0), (B.4)

where
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The governing equation for the elasticity problem is stated as
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where the stress pe
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and the elasticity tensor Ce
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Note that C e
ijkl

is not continuous and that equation (105) must be satis"ed in a weak sense.
Let
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where H1(<) denotes the Sobolev space of the "rst kind.
To get the weak form the governing equations are multiplied by a weighting function
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and integrated over the domain:
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By use of the divergence theorem, one obtains the following weak form.
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Expanding the expressions for ue and ve asymptotically,
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Note that the choice of v is arbitrary. Assuming v0"0 yields
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Assuming v1"0,
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When / () , y) is >-periodic in y,
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Taking the lime?0
for equation (B.13) gives
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Using the separation of variables technique
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one obtains the following weak form for the characteristic function, s:
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By inserting equation (B.16) into equation (B.15), the expression for the weak form, for the
global behavior, is obtained:
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or
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is the homogenized elasticity tensor.
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